Clojure lesson learned
background
I started programming Clojure about 5 month ago. So I am fairly new to the language. I'm using Clojure to write my master thesis, which is a recommendation engine for advertisement. When you start to build a recommendation engine stuff like Mahout can be a big help. However it's java :(, which is very verbose. So I looked into jython and jruby, which enable you to write python and ruby respectively, that runs on the JVM. Sadly neither did the trick. Jython is missing a simple way to bundle everything up in one uber.jar while jruby had some issues finding the correct constructor for one of the mahout classes :(. So I seized that opportunity to learn Clojure, and I am very happy with my choice.
I'm now using Clojure and Leiningen. I chose Parallel Colt as my matrix library, using a wrapper functions to provide a nicer Clojure interface.
incanter is my pick for basic data analysis and visualisation.
likes
The best thing about Clojure are its persistent and immutable data structures. Immutable means that one can not change a basic data structure in place. If you need to add a thing to a vector you simple call a function that returns a new vector. This is where the persistent property becomes important. Persistent refers not to its storage on disk but to its property of keeping costs of operations within the same big O class. Which is to say adding a element to a vector will always take O(1) time no matter the size of the vector. This is also true for all basic Clojure data structures:
- lists
- vectors
- maps
- sets
Here is a very good video with Rich Hickey, the creator of Clojure, and Brian Beckman, where they talk about the inner workings of Clojure.
I can highly recommend this.
Clojure is the first lisp that I am using and I fell in love with s-expressions. They allow for highly flexible code and with the combination of macros enable anyone to extend the language itself! Also there are no syntax exceptions or reserved keywords to remember, because everything is a list and the first argument is interpreted to be a function. Done. Everything else is based on that rules.
dislike
Now its not all fun and games. Clojure, however powerful, is still a young language. So there are some things missing:
- I'm still looking for a good debugger. As far as I know ritzis the best thing you can get right now. However it's not trivial to set up if you are not using emacs :(.
- Running on the JVM comes with a long startup time :( .
- REPL and tools.namespace tothe rescue. Stuart Sierra has an article about his workflowwhich only reloads code from files that have changed and those depending on them.I haven't applied that to my workflow now, because I hadn't had the need. My REPL startup time is about 2 sec., which is OK considering I only have to restart it about 1-3 times a day.
lessons learned
One of my main motivations to try Clojure was to utilize its STM: Software Transactional Memory which enables you to use agents and atoms and a lot of concurrent goodness. So I assumed having to think in concurrent terms would be the big obstacle.
Immutable data structures rock!
It turns out that the biggest brain teaser during the first 2 weeks where immutable data structures! This forces you to think the other way around. You end up writing receipts on how to create a new thing by applying a function to each element of a input, instead of writing receipts on how to change something in place.
Lets assume we want to implement the game of live.
In python a update function could look something like this:
def update(world):
new_world = []
for y, row in enumerate(world):
new_row = []
for x, cell in enumerate(row):
new_row.append(next_cell_state(world, y, x))
new_world.append(new_row)
return new_world
This function creates a new world and adds stuff to it while it iterates the input world. This is typical state manipulating code.
With immutable data structures and functional programming one has to think differently:
(defn update [world]
(map-indext (fn [y row]
(map-indext (fn [x cell]
(next-cell-state world y x))
row))
world))
In the Clojure version we use map to apply a function to each row and then another map to apply another function to each cell. Each map call returns a sequence that is implicitly build and returned. At no point in time can we change the input world nor do we change an already created object.
You can of course write functional code in python using map. However python doesn't ensure that you do not change the data structure in place by accident.
use require instead of use
Namespaces and including and referencing code from other packages was very confusing to me, because to do so you can use (use)
(require)
and (import)
.
When applying use
all the functions are imported into the current namespace:
(ns my.core
(:use [my-lib.core]))
(hello "world")
Where require
lets you alias packages:
(ns my.core
(:require [my-lib.core :as core]))
(core/hello "world")
inject state into functions
One thing that stuck right in my head from the beginning was that everything a function operates on should be past in as an argument instead of using a global var. Stuard Sierra gave a talk titled Clojure in the Large that points out why this is the right way to do things and gives tips and examples on how to achieve this goal in the large.
Don't overuse ->> and ->
It took me a while to understand the -> and ->> operations. You can use those to build a pipeline. Which is a beautiful construct in many situations.
; using plain clojure calls:
; one has to start at the last call, making this difficult to follow
(filter #(= 0 (rem % 4)) ; only include the ones that are multiple of 4
(map #(+ 1 %) ; add one to each
(map #(* 3 %) ; multiply each by 3
(filter odd? ; only include the odd ones
(range 20))))) ; numbers from 0 to 19
; => (4 16 28 40 52)
; using the ->> pipe, where the result of the last call
; is used as the last argument in the next function
(->> (range 20)
(filter odd?)
(map #(* 3 %))
(map #(+ 1 %))
(filter #(= 0 (rem % 4))))
; => (4 16 28 40 52)
However when you find yourself writing huge anonymous functions that draw from previous defined variables for example in a let it is probably time to reconsider your code :) and use plain let to store and name intermediate results.
Test first!
This is and remains true. You shall test first and implement later!
Being new to the language the REPL helped me a lot. I used it to experiment with code snippets quickly. Especially when you are not sure how the output of a function looks exactly, it's nice to play around with it a little in the REPL.
However I did not go back and encoded this in test cases. I got lazy and tried to cut corners by skipping the tests. Guess what it came back to bite me only 2 weeks later. Write tests!
The default Test framework for Clojure seams to be midje. However I liked my classical TDD/BDD DSL so I used speclj. Running lein spec -a
on the command line will autotest all the functions and rerun tests of files that were changed. It does keep a JVM running so it's fast. However, every time you remove definitions you need to restart the call, because it will keep the old definition around. So if you still have code that depends on the allegedly removed function your test will not fail until you restart the JVM.
Making things run on multiple cores is easy.
If you use map
a lot making things run on multiple cores is easy: just replace map
with a pmap
. This will execute the function in parallel using multiple cores. While this is a valid and easy step, it is only beneficial if the function takes some time to run. Otherwise the overhead of pmap
will mitigate the effect and you end up being slower. So start at the out calls and see how far you can get.
If you need better parallel performance Clojure gives you the new reducers. They sacrifice laziness to give you a fork join abstraction that uses map reduce semantics. I did read the article, but did not have the time to experiment a lot with it.
Also core.async gives you Go like lightweight threads and channel semantics. Drew Olson has a nice article comparing clojure core.async with go.
vim and clojure
I started to code Clojure using Sublime. While it has a nice REPL, which shows the last command send to it, it turned out to be quiet unstable :( . So I switched to vim using vim-fireplace, which REPL integration is a lot better. It also comes with invaluable :Doc and :Source commands which deliver the documentation of the source of a function, respectively. Sadly ctags has no support for Clojure, but you can use the lisp version for now. You don't want to miss out on rainbow parentheses ;). The vim commands y%
and d%
are big time and brain power savers, because they let you copy or delete a complete s-expression.
conclusion
There are many things I like about Clojure so far. It has great java integration and dependency management, it's dynamic and fast. Learning it is not easy, if you come from a traditional object oriented background but it is worth your time, because you will become a better developer. Obviously I didn't spent enough time with it to feel the pain every tool brings with it if you use it frequently. The development setup is decent while not perfect jet, but it is still quiet a young language.
I can recommend you give it a spin :) .
If you live in the cologne area you can find me at the Cologne Clojure User Group, or just leave me a comment :) .
Thanks for reading all my ramblings ;). I hope it was worth your time.